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Abstract — In this paper, we demonstrate a 2D-to-3D video 
conversion system capable of real-time 1920×1080p 
conversion. The proposed system generates 3D depth 
information by fusing cues from edge feature-based global 
scene depth gradient and texture-based local depth 
refinement. By combining the global depth gradient and 
local depth refinement, generated 3D images have 
comfortable and vivid quality, and algorithm has very low 
computational complexity. Software is based on a system 
with a multi-core CPU and a GPU. To optimize 
performance, we use several techniques including unified 
streaming dataflow, multi-thread schedule synchronization, 
and GPU acceleration for depth image-based rendering 
(DIBR). With proposed method, real-time 1920×1080p 2D-
to-3D video conversion  running at 30fps is then  achieved1.  

 
Index Terms — Depth map generation, 2D-to-3D conversion, 

real-time implementation, 3D video 

I. INTRODUCTION 

3D video is getting immense public attention recently 
because of vivid stereo visual experience over conventional 
2D video. There are several methods to produce 3D content, 
such as active depth sensing, stereo camera recording, and 3D 
graphics rendering. Active depth sensing uses active sensors 
such as structured light, time-of-flight sensor [1] to estimate 
actual depth. Stereo cameras record disparity between views 
and produce depth with stereo matching. However, these 
methods need specific devices and are only suitable for new 
content production. Most of the existing videos do not include 
any pre-recorded depth information. To convert these 2D 
videos to 3D ones, time-consuming manual editing of the 
depth information is required and becomes a huge barrier. The 
lack of 3D content has become the major problem for 3D 
display industry. An efficient automatic 2D-to-3D conversion 
system is necessary in this case. A typical 2D-to-3D 
conversion system automatically generates depth information 
from single view video and converts it to 3D video by using 
the produced depth maps [2] as shown in Fig. 1. 
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Fig. 1. Typical 2D-to-3D video conversion flow. 

2D-to-3D video conversion is typically based on the 
characteristics of human depth perception. The human brain 
integrates various heuristic depth cues to generate depth 
perception, including binocular cue from two eyes and various 
monocular cues from single eye. 2D-to-3D conversion 
recovers depth information from various depth cues in single 
view video. Various techniques have been proposed in [3]-
[10]. However, generating depth maps from single view video 
is an ill-posed problem. Physical depth is hard to recover even 
with high complexity algorithms. 

For 3D consumer electronics devices, real-time on-the-fly 
conversion is required. Besides, the implementation cost must be 
reasonable. In our previous proposed system, we use different 
cues for depth generation [11], [12]. Our latest work  proposes an 
ultra low cost 2D-to-3D conversion system [13]. We use human 
visual perception to generate visually comfortable depth maps 
rather than physically correct depth maps. The algorithm fuses 
global and local depth cues from video analysis and generates 
depth information with little side effects. In this work, the system 
is implemented on a laptop computer with a multi-core CPU and 
a GPU. Optimization techniques such as unified streaming 
dataflow, multi-thread schedule synchronization, and GPU 
acceleration are applied to this system. The proposed system is 
capable of real-time 1920x1080p conversion and suitable for 3D 
consumer electronics devices. 

The rest of this paper is organized as follows. Section II 
describes the algorithm and system optimization techniques used 
in the proposed system. Section III summarizes the experimental 
results. Concluding remarks are finally made in Section IV. 

II. PROPOSED SYSTEM 

The algorithm and optimization techniques of the proposed 
system are described in  this section. Algorithm for the  
2D-to-3D conversion is based on human visual perception. 
Depth maps are generated by fusing global depth gradient and 
local depth refinement. Multi-view images are rendered by 
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depth image-based rendering (DIBR) from the depth maps and 
original 2D images. The output images are presented on a 3D 
display. For real-time consideration, we apply several 
optimization techniques on the multi-core CPU and the GPU. 
First, to eliminate the requirement of frame-level format 
conversion, we propose a format-friendly  data access scheme 
with unified streaming dataflow. Next, for multi-threading 
optimization on the multi-core CPU, we use schedule 
synchronization to maximize data reuse. Finally, we further 
accelerate DIBR on the GPU if it is available in the system. 
Shared memory buffering and parallel dynamic programming 
are used to take care of bandwidth and visibility problem. 
With proposed techniques, bandwidth is reduced and  
parallelism is maximized for real-time performance. 

A. Algorithm 

We generate depth maps by fusing two low complexity 
cues based on human visual perception rather than physical 
depth information. First of all, in human's living environment, 
objects in the lower visual field are mostly supposed to be 
closer to the observer. Near-to-far global scene depth is the 
most important cue in the real world. Secondly, lighting and 
color gradient yield some depth perception and are used as the 
second cue. Some great painters as Paul Cezanne  use "warm" 
pigments (red, orange and yellow) to indicate near objects and 
"cool" ones (blue, violet, and cyan) to indicate far objects. The 
above two depth cues are major cues for human depth 
perception and are fused together to generate perceptual depth 
fast and effectively in our system. The system block diagram 
is shown in Fig. 3 in the following section. Firstly, edge 
feature-based global depth gradient generates an initial scene 
depth map. Then local depth map refinement fuses the initial 
depth map with the texture cue. In the following subsections, 
we explain the each part in detail. 

 
1) Global Depth Map Generation 

As human visual perception tends to interpret that the lower 
visual field is closer, we apply near-to-far global scene depth 
gradient as the major cue. To decide the gradient, we use the 
fact that the depth gradient of the ground is often larger than 
that of the sky. Besides, the ground area is more complex than 
the sky. We use the horizontal complexity of the frame to 
distinguish between the ground and the sky. The horizontal 
complexity is obtained from the cumulative horizontal edge 
histogram. Near to far global depth ranging from 0 to 255 for 
the 8-bit depth map is assigned according to the cumulative 
histogram. When horizontal complexity is higher, more depth 
gradient is assigned. This method yields a sharper depth 
change between the smooth sky and the objects, and between 
the defocus background and the in-focus foreground. This 
method has better protrusion effect than linear or fixed depth 
gradient. 

2) Local Depth Refinement 
The concept of local depth refinement is based on two 

characteristics. Firstly, the edge of the input image has high 
potential to be the edge in the depth map. Secondly, people feel 

red (warm) color is nearer, and blue (cold) color is farther in 
visual perception. Besides, objects with higher luminance feel 
like nearer than those with lower luminance. Therefore, color 
can be used as a depth cue to enhance the depth perception on 
both edge and color domains. Based on the concept, we use a 
novel combination of Y, Cr, and Cb color channels to generate 
the fine-grained depth map as discussed below. 

Although not all the conditions satisfy the psychological 
hypothesis, the depth with high correlation to human 
perception also generates visually comfortable result. The 
preserved lighting gradient on the object surface also provides 
human depth perception in this case. In practice, Y and Cr are 
mapping to linear increasing gains from 1-Yth to 1+Yth, and 
Cb is mapping to a linear decreasing gain from 1+Cbth to 1-
Cbth for depth fusion. The following equation  is used to refine 
the depth map: 

 
            xCbfx Cb CrfxYfxGxDepth CrYfused   (1) 

where x stands for position, G(x), fY(Y(x)), fCr(Cr(x)), fCb(Cb(x)) 
are the function of global depth gradient, luma Y channel gain, 
chroma Cr channel gain, and chroma Cb channel gain, 
respectively. 
 

3) Depth image-based rendering(DIBR) 
For 3D visualization, the input image is converted to multi-

view images with the generated depth map. The disparity 
among the rendered images is observed by human eyes and 
then produces 3D effect. We derive the disparity from the 
depth, shown in Fig. 2. Depth image-based rendering(DIBR) 
algorithm is used for the generation of multi-view images. We 
use pixel-based DIBR in [14], [15].  

 

 
Fig. 2. Depth and disparity relations for DIBR algorithm. 

 

B. Performance Optimization 

For real-time demonstration, the 2D-to-3D conversion 
system is integrated with video decoders, a 3D video player, 
and other related components in the operating system. Due to 
the high resolution of video input and output, memory 
bandwidth requirement is quite high and becomes a 
performance bound. To reduce excess memory access, several 
techniques are proposed below. The detail of each 
optimization technique is discussed in following subsections. 
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1) System Architecture 

The system consists of two major parts: depth image 
generation and DIBR, as shown in Fig. 3. Bandwidth and 
computation optimization are the major concern.  

For depth image generation, the execution path is complex. 
The whole image frame is read several times by different 
computation modules and the flow is subject to change. As a 
result, it is more desired to execute on a multi-core CPU. 
Different computation can be executed concurrently with 
Multiple Instruction stream, Multiple Data stream(MIMD) 
architecture of a multi-core CPU.  

For DIBR, the dataflow is rather fixed. Besides, the 
processing loading is high for pixel-based DIBR algorithm. It 
is more desired to put DIBR on a highly parallelized GPU to 
reduce the loading of the CPU. In addition, the bandwidth of 
transferring the rendered frame can be saved if DIBR directly 
renders the output frame on a GPU texture.  

For these reasons, we put depth image generation on the 
CPU and DIBR on the GPU to optimize bandwidth and 
computation. 

 

2) Unified Streaming Dataflow for Multi-Format 
Processing  

  Video decoders in the system may output video in various 
formats, color space, and chroma subsampling modes as shown 
in Fig. 4. Formats for input images, as RGB32, YUYV, and 
YV12, may be in various kinds of colorspace, packed or planar, 
horizontally or vertically sub-sampled. The final chosen format 
is the negotiation result of decoders, renderers, and other 
components in the system. If the format is not compatible, 
frame-level color conversion by default is done beforehand. The 
conversion consumes excess bandwidth, and so affects 
performance. To avoid this, we firstly do the computation on the 
input colorspace. Filter parameters are projected to input 
colorspace instead to avoid frame-level conversion. Next, we 
propose unified streaming dataflow for the system pipeline. The 
depth image generation and DIBR are implemented with this 
dataflow to support various pixel packing order. 

 

 
Fig. 4. Stream descriptors for various pixel packing orders. 

 
The unified streaming dataflow uses stream descriptors to 

describe the pixel packing order for various formats. The 
descriptors are based on shape descriptors in [16] with some 
modification. A stream descriptor consists of the pointer 
indicating the first element of the color component and an 
description for pixel iteration order. The description consists 
of three parameters: stride, span, and skip. Stride describes the 
spacing between elements. Span describes how many 
elements are to iterate before applying a skip offset. Span is 
always equal to frame width (W) if no scaling is required. 
Skip in practice is the pitch, which is the actual offset between 
rows. In addition, stride and skip may be represented in 
fractional numbers in terms of K / R, where K and R are the 
numerator and the denominator, respectively. For stride in 
fractional number Ks / Rs, the value is repeatedly processed Rs 
times before applying an offset Ks. For skip in fractional 
number Kp / Rp, the whole row is repeatedly processed Rp 
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Fig. 3.  System architecture for proposed 2D-to-3D video conversion system. 
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times before skipping a pitch Kp. For example, RGB32 in Fig. 
4(a) can be processed with stride = 4. YUYV in Fig. 4(b) can 
be processed with fractional chroma stride 4/2, which means 
processing 2 repeating pixels before applying a 4-pixel offset. 
For YV12 case in Fig. 4(c), we may use stride = 1/2  and skip 
= pitch / 2 on chroma components. As shown above, various 
formats can be processed with the descriptors. For practical 
implementation, pointers for the three color components are 
overloaded with stream descriptor-based pointers. Depth 
image generation and DIBR access the input and output color 
frames with proposed unified dataflow to avoid redundant 
frame-level color conversion. 

 
3) Multi-Thread Schedule Synchronization for Data 
Locality Optimization 

Since the system accesses the input and output frames 
multiple times, the performance will be degraded without 
proper scheduling. As shown in Fig. 5(a), the major system 
pipeline consists of global depth assignment, local depth 
refinement, and DIBR. Global depth assignment reads the 
original input frame twice and read/write temporary buffer for 
cumulative edge histogram, and writes a generated global 
depth map to memory. Next, local depth refinement reads 
original input frame once, reads the global depth map, and 
writes the refined depth map to memory. Finally, DIBR reads 
the refined depth map and the original input frame to produce 
multi-view input frames. 
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Fig. 5. Memory access optimization  by multi-thread schedule 
synchronization. 
 

 Since the input frame is likely to exceed maximum CPU 
cache size for 1080p video, the cache cannot effectively save 
the bandwidth and the data is not reused. The same situation 
happens on the generated depth map. Therefore, the system 
suffers from repetitively load/store action. To eliminate the 
large buffer required for the system, we change the processing 
size from the whole frame to small regions. Synchronization 
mechanism is added to do this. A frame-level task for each 

stage is divided evenly into much smaller jobs as line 
fragments. Each of the fragment ranges a number of pixels in 
a horizontal row of  the input frame. Synchronization points 
are placed at the start of the jobs. The jobs are put in job pools. 
At each synchronization point, each thread checks maximum 
displacement of synchronization points among various kinds 
of task. If the displacement is larger than a threshold value, 
the job is postponed and the corresponding worker thread 
steals job from other tasks. If no job is present, the thread 
sleeps temporarily. To prevent additional read required for 
histogram accumulation, the previous frame edge count is 
taken instead for normalization. This method has a practically 
unnoticeable effect on the visual quality. The refined schedule 
is shown as Fig. 5(b). The transaction size for each action is 
reduced to a line fragment. As a result, the CPU cache is 
effective in buffering data. Much external memory access is 
reduced. With the proposed multi-threading scheduling 
synchronization scheme, data locality is improved and 60% 
bandwidth  is reduced. 

 

4) GPU Acceleration for DIBR 
If a GPU exists in the system, DIBR is accelerated on it to 

reduce the loading of the CPU. Previous work [17]-[19] 
proposes system that deliver real-time performance by using 
GPU or hardware. The DIBR is based on texture shift or 
supported by texture unit on GPU. The method is not very 
suitable for our algorithm. Every pixel has its own depth in 
our algorithm. We desire preserving the per-pixel depth and 
the object gradient detail for viewing experience. For this 
reason, we propose per-pixel parallel DIBR algorithm on GPU 
in the following. 

We use the following methods for accelerating DIBR on 
GPU. Firstly, input and output frames need to be moved 
between main memory and graphics memory if standalone 
graphics memory is used. Data movement in between is 
overlapped with computation for better performance by using 
stream. If the video player supports 3D texture output, the 
output frames can be directly rendered and even more 
bandwidth is saved. Secondly, we use massive parallelism on 
GPU to accelerate DIBR. The scheme is shown in Fig.6. The 
output frames to be rendered are divided into multiple blocks 
for parallel rendering. Each block contains one horizontal line. 
Multiple threads in the same block render the line 
concurrently. Each thread renders 1 pixel at one time. If line 
width is larger than thread number, the operation repeats until 
all pixels in the line are rendered. In practice, the GPU usually 
contains multiple stream processors, and so multiple blocks 
are rendered concurrently. Besides, each processor may 
contain a few blocks for latency hiding. 

For this scheme in Fig. 6, there are two major problems that 
affect performance: the low effectiveness of off-chip memory 
transaction and visibility problem. These two problems are the 
serious limiting factor for acceleration of DIBR on GPU and 
also mentioned in [20]. Methods for solving the problems are 
discussed in the following. 
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Fig. 6. Thread and block level parallelism for DIBR on GPU. 

 
Off-chip memory access has low bandwidth capacity and 

long latency, and so it affects performance without proper 
design. Since DIBR is per-pixel processing, direct 
implementation causes lots of 1-byte transaction. Many short 
transactions are not efficient for accessing off-chip memory. 
To avoid this, we use on-chip shared memory as an I/O buffer. 
Input color images and depth images are first loaded into 
shared memory. Output multi-view images are also buffered 
in the shared memory before flushing out to off-chip memory. 
All views are rendered at the same time for the reduction of 
common input data. Since the shared memory on chip is quite 
limited, we only save part of the line that is required for 
current computation. Size of the memory depends on the total 
number of threads in a block. More blocks can be loaded in a 
single stream processor(SP) with limited use of shared 
memory. Latency hiding is better in this way. 

 Another major problem is visibility problem for rendering 
pixels. For view rendering, objects in the same line of sight 
overlap each other. Only the nearest object should be rendered. 
This problem also exists in computer graphics. Since the 
DIBR is pixel-based rendering, reverse painter's algorithm [21] 
solves this problem efficiently. To find the nearest pixel 
without checking all the possible pixels, we use the most left 
pixel in the origin view that corresponds to the given line of 
sight for the left view, and the most right one for the right 
view. The problem then becomes a min/max problem. Here 
we propose a parallel dynamic programming technique to 
solve this problem efficiently. For dynamic programming, the 
overlapping structure of this problem is derived below: 
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where k is the level, x is the position, p(x) is the pixel value at 
x, Fk(x) is the desired min/max result at level k ranging from 
x – 2k + 1 to x, and M is min/max function according to the 
viewer's position. 

Since the computation of Fk(x) for level k only depends on 
previous level result, we can perform calculation of the same 
level in parallel. The computing scheme is shown in Fig. 7. 

The data is first loaded in shared memory. Fine-grained 
parallelism is used. Each step advances results in the shared 
memory with one level from previous level results. In each 
step, each thread performs one min/max operation and the 
result is written back to shared memory. The total number of 
required step is the binary logarithm value of the disparity 
range. As a result, we may find out the required min / max 
value efficiently by repeating a few steps of the above process. 
Since the disparity range can be derived for the given system 
in advance, loop unrolling is also used to eliminate iteration 
overhead. With this method, the visibility problem is solved 
efficiently. 
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Fig. 7. The computing scheme of rendering positions. Parallel dynamic 
programming technique is used on GPU to solve visibility problem. 

 

III. EXPERIMENT RESULTS 

To evaluate the algorithm, we compare the proposed 
algorithm with algorithms of two previous work. The analyses 
on visual quality and performance  are shown in the following. 

A. Visual Quality Analysis 

The visual quality of the proposed algorithm was evaluated 
by comparing the result from three algorithms as the 
conventional motion-based  algorithm, the edge-based 
algorithm in [12], and the proposed algorithm. Motion-based 
algorithm was implemented based on [5]. Four video 
sequences, Air, Fashion, Arctic, Cod from [23], and two video 
sequences, Akko & Kayo, Flamingo from MPEG Multi-view 
video coding were used to perform the subjective view 
evaluation. The results were evaluated using a slightly 
modified version of single-stimulus presentation method in 
ITU-R BT.500-10 [24]. The synthesized results were 
displayed on the 120Hz 3D display with active shutter glasses 
for evaluation. The subjective evaluation was performed by 20 
individuals. The participants watched the stereoscopic videos 
in a random order and were asked to rate visual quality of each 



920  IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011 

 

video. The overall quality of depth quality was assessed using a 
five-segment scale and mapped to 100 point scale. Fig. 9 shows 
the values of the two factors acquired by experiments for the six 
evaluation sequences. Fig. 8 shows some example of depth map. 
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Fig. 9. Subjective evaluation results. 

 
The conventional motion-based algorithm as [5] relies on 

the quality of the motion vector. In the sequences with regular 
motions such as Air sequence, motion parallax is captured 
correctly and the depth has best protrusion effect among all. 
The regular motion implies that the object has a simple 
movement in the same direction. If the objects have complex 
self motions or varying lighting source such as Flamingo, or 
uncompensated ego motion as Fashion, the motion-based 
algorithm generates non-continuous or ill-predicted depth and 
makes viewers feel uncomfortable. In addition, the depth is 
not extracted correctly if the object is stationary or no relative 
motion exists. 

The edge-based algorithm and the proposed algorithm have 
less side effects and yield good quality. Compared with the 
conventional motion-based algorithm that generates depth 
from multiple frames, the latter two methods use only a single 
image to generate depth. However, the quality of edge-based 
algorithm will drop if the assumption of the global depth does 
not hold or large foreground objects exist, such as Air. In 
comparison, proposed algorithm has texture cues and still 
generates satisfactory depth with little perceptible side effects. 

From observation, we also discover an interesting 
phenomenon. Human visual perception still generates correct 
result even when the depth map of object is inverted. The 
phenomenon can also be found in the hollow-face illusions 
[22]. When the light gradient on the surface is preserved, 
human visual system may overwrite the depth perception with 
daily life experience. Hence, texture gradient should play an 
important role on the depth perception. This could also 
explain the subjective quality test result of proposed algorithm. 
The side effects are hard to discover even the depth is inverted. 
Finally, Fig. 10 shows some examples of red-cyan 
stereoscopic images generated from the proposed algorithm. 

 

 
Fig. 10. The red-cyan images of the six test sequences. 

B. Performance Analysis and Implementation 

The system is implemented on a notebook computer, and 
integrated in a 3D video player software for evaluation. CPU 
of the notebook is an 1.60 GHz quad-core CPU with 6M 
cache featuring simultaneous multithreading. The notebook 
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Fig. 8. Original 2D images (first row), depth maps result of motion-based (second row), edge-based (third row), and proposed algorithm (bottom). 
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has a 1.375GHz GPU with 7 stream processors inside. Each 
stream processor consists of 16 cores. 

To compare performance of the three algorithm fairly, all the 
algorithm is run on CPU with single thread. The performance is 
shown in TABLE I. We use our implementation of the motion 
estimation for the run-time of the motion-based algorithm. The 
time can be less if the motion vectors come from the decoder. 
As we can see, the proposed algorithm has relatively low 
computation time in comparison to the other two algorithms. 

 
TABLE I 

ALGORITHM PERFORMANCE COMPARISON 

Algorithm Average Performance 

     Motion-based Algorithm ~7231 ms / frame 
     Edge-based Algorithm 17261 ms / frame 
     Proposed Algorithm (Un-optimized) 901 ms / frame 

 
With proposed optimization techniques, 960×540p @ 30fps is 

achieved on the multi-core CPU alone. With GPU acceleration 
for DIBR, 1920×1080p @ 30fps video conversion is achieved. 
Because the DIBR is run on GPU, CPU usage is reduced to 
30%~50%. The specification of DIBR on GPU is shown in 
TABLE II. The usage of the shared memory is reported by 
compiler. Besides, the shared memory usage depends on number 
of threads per block. Since the shared memory resource is limited, 
we choose the number of threads for best balance. DIBR can be 
run on GPU efficiently with the proposed technique. With the 
proposed method, the performance of 2D-to-3D conversion is 
achieved for 1920x1080p video at real-time 30fps. 

 
TABLE II 

SPECIFICATION OF DIBR ON GPU 

Properties Specification 

     Register used per thread 16 registers 
     Shared memory used per block 1440 bytes 
     Threads per block 64 threads 
     Rendering performance 1920x1080p@30fps 
     Speedup 26.4x 

IV.  CONCLUSION 
An efficient algorithm and optimization of 2D-to-3D 

conversion are presented. The proposed algorithm uses simple 
assumption as depth cues with little side effects instead of 
combining computation-extensive depth cues. We demonstrate 
the system on a multi-core CPU and a GPU. Several techniques 
are proposed to optimize bandwidth bottleneck. Real-time 
performance is achieved in converting 1920×1080p @ 30fps. 
The proposed system is suitable for consumer 3D devices. In 
future, we may further integrate the whole system in the naked-
eye multi-view 3D system for 3D application. 

REFERENCES 
[1] S. B. Gokturk, H. Yalcin, and C. Bamji, "A time-of-flight depth sensor, 

system description, issues and solutions," IEEE Workshop on Real-Time 
3D Sensors and Their Use, 2004. 

[2] Sung-Yeol Kim, Sang-Beom Lee, and Yo-Sung Ho, "Three-dimensional 
natural video system based on layered representation of depth maps," in 
IEEE Transactions on Consumer Electronics, 2006. 

[3] Chao-Chung Cheng, Chung-Te Li, Yi-Min Tsai, and Liang-Gee Chen," 
Quality-Scalable Depth-Aware Video Processing System," SID 
Symposium Digest of Technical Papers, 2009. 

[4] Wa James Tam, Carlos Vázquez, and Filippo Speranza, 
"Threedimensional TV: A novel method for generating surrogate depth 
maps using colour information," in SPIE Electronics Imaging, 2009 

[5] I.A. Ideses, L.P. Yaroslavsky, B. Fishbain, R. Vistuch, "3D from 
Compressed 2D Video," Proceedings. of SPIE, Vol.6490,  2007. 

[6] Yong Ju Jung, Aron Baik, Jiwon Kim, and Dusik Park, "A novel 2D-
to-3D conversion technique based on relative height depth cue," SPIE 
Electronics Imaging, Stereoscopic Displays and Applications XX, 
2009. 

[7] H.Murata et al, "Conversion of Two-Dimensional Images to Three 
Dimensions," SID Symposium Digest of Technical Papers, 39.4, pp859-
862, 1995. 

[8] T. Iinuma, H. Murata, S. Yamashita, and K. Oyamada, "Natural 
Stereo Depth Creation Methodology for a Real-time 2D-to-3D 
Image Conversion," SID Symposium Digest of Technical Papers, 
2000. 

[9] H. Murata et al, "A Real-Time 2-D to 3-D Image Conversion 
Technique Using Computed Image Depth," SID Symposium Digest 
of Technical Papers, 32.2, pp919-922, 1998. 

[10] Chul-Ho Choi, Byong-Heon Kwon, and Myung-Ryul Choi, "A real-time 
field sequential stereoscopic image converter," IEEE Transactions on 
Consumer Electronics, 2004. 

[11] Chao-Chung Cheng, Chung-Te Li, Po-Sen Huang, Tsung-Kai Lin, Yi-
Min Tsai, and Liang-Gee Chen, "A block-based 2D-to-3D conversion 
system with bilateral filter," International Conference on Consumer 
Electronics(ICCE), 2009.  

[12] Chao-Chung Cheng, Chung-Te Li, and Liang-Gee Chen, "A 2D-to-3D 
Conversion System Using Edge Information," IEEE Transactions on 
Consumer Electronics, vol. 56, no. 3, pp. 1739-1745, Aug. 2010. 

[13] Chao-Chung Cheng, Chung-Te Li, and Liang-Gee Chen, "An Ultra-
Low-Cost 2D-to-3D Conversion System," SID Symposium Digest of 
Technical Papers, 2010. 

[14] W.-Y. Chen, Y.-L. Chang, and L.-G. Chen, "Real-time depth image 
based rendering hardware accelerator for advanced three dimensional 
television system," IEEE Int. Conf. on Multimedia and Expo., 2006. 

[15] W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen, 
"Efficient Depth Image Based Rendering with Edge Dependent Depth 
Filter and Interpolation," IEEE Int. Conf. on Multimedia and Expo. 
(ICME), 2005 

[16] S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Morris, M. 
Schuette, annd A, Saidi, "The Reconfigurabte Streaming Vectror 
Processor (RSVP)," MlCRO'36, December 2003. 

[17] Man Hee Lee, and In Kyu Park, "Accelerating Depth Image-Based 
Rendering Using GPU," Lecture Notes in Computer Science, vol.  4105, 
pp. 562-569, 2006. 

[18] Chun-Te Wu, Wei-Hao Huang , Chih-Hao Liu, Wei-Jia Huang, Kai-Che 
Liu and Ludovic J. Angot, "A Real-Time Video 2D-to-3D With Bilateral 
Grid," ACM Special Interest Group on GRAPHics and Interactive 
Techniques(SIGGRAPH), 2010. 

[19] Yamada, K., and Suzuki, Y., "Real-time 2D-to-3D Conversion at Full 
HD 1080P Resolution, "  International Symposium on Consumer 
Electronics (ISCE), 2009. 

[20] D. Lin, V. Huang, Q. Nguyen, J. Blackburn, C. Rodrigues, T. Huang, M. 
N. Do, S. J. Patel, and W.-M. W. Hwu, "The parallelization of video 
processing," IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 103–
112, Nov. 2009. 

[21] Foley, James, van Dam, Andries, Feiner, Steven K., Hughes, and John F., 
"Computer Graphics: Principles and Practice," Addison-Wesley, 1990, 
p. 1174. ISBN 0-201-12110-7. 

[22] Richard Gregory, "Knowledge in perception and illusion," Philosophical 
Transactions of the Royal Society of London, Series B 352, pp. 1121–
1128, 1997. 

[23] André Redert, Robert-Paul Berretty, Chris Varekamp, Oscar Willemsen, 
Jos Swillens, Hans Driessen, "Philips 3D solutions: from content 
creation to visualization," Proceedings of the Third International 
Symposium on 3D Data Processing, Visualization, and Transmission 
(3DPVT), pp.429-431, 2006. 

[24] ITU-R Recommendation BT.500-10, (2000), "Methodology for the 
subjective assessment of the quality of television pictures." 



922  IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011 

 
BIOGRAPHIES 

Sung-Fang Tsai was born in Hsinchu, Taiwan in 1983. 
He received the B.S. and M.S. degree in electrical and 
electronics engineering from National Taiwan University, 
Taipei, Taiwan in 2005 and 2007, where he is working 
toward the Ph. D. degree at the Graduate Institute of 
Electronics Engineering. His major research interests 
include video coding and algorithm, computer vision, and 
architecture design of 2D-to-3D video conversion system. 

 
Chao-Chung Cheng (S'08) was born in Tainan, Taiwan, 
R.O.C. in 1981. He received the B.S., and M.S. degrees 
in Electronics Engineering from National Chiao-Tung 
University, Hsinchu, Taiwan, R.O.C., in 2003, and 2005, 
respectively, and Ph.D. degrees in Electronics 
Engineering from National Taiwan University, Taiwan, 
Taiwan, R.O.C., in 2010. His research interests include 
digital signal processing, video system design, 3D signal 
processing, stereo vision and 2D-to-3D conversion. 

 
Chung-Te Li was born in Taipei, Taiwan, R.O.C. in 
1984. He received the B.S. degree in Department of 
Electronics Engineering from National Taiwan 
University, Taiwan, Taiwan, R.O.C., in 2006. He is 
currently a Ph.D. student of Graduate Institute of 
Electronics Engineering from National Taiwan 
University. His research interests include digital signal 
processing, computer vision and image/video processing 
algorithm. 

 

Liang-Gee Chen (S'84–M'86–SM'94–F'01) received the 
B.S., M.S., and Ph.D. degrees in electrical engineering 
from National Cheng Kung University, Tainan, Taiwan, 
R.O.C., in 1979, 1981, and 1986, respectively. In 1988, he 
joined the Department of Electrical Engineering, National 
Taiwan University, Taipei, Taiwan. From 1993 to 1994, he 
was a Visiting Consultant in the DSP Research 
Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, 
he was a Visiting Scholar of the Department of Electrical 

Engineering, University of Washington, Seattle. Currently, he is Professor 
with National Taiwan University. His current research interests are DSP 
architecture design, video processor design, and video coding systems. Dr. 
Chen has served as an Associate Editor of IEEE TRANSACTIONS ON 
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as 
Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 
1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND 
SYSTEMS II since 2000. He has been the Associate Editor of the Journal of 
Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for 
the Journal of Video Signal Processing Systems. He is also the Associate 
Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman 
of the Seventh VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE 
Workshop on Signal Processing Systems: Design and Implementation. He is 
the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society 
and is a member of the IEEE CAS Technical Committee of VLSI Systems and 
Applications, the Technical Committee of Visual Signal Processing and 
Communications, and the IEEE Signal Processing Technical Committee of 
Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE 
CAS Technical Committee on Multimedia Systems and Applications. From 
2001 to 2002, he served as a Distinguished Lecturer of the IEEE CAS Society. 

 

 

 


