
S.-F. Tsai et al.: A Real-Time 1080p 2D-to-3D Video Conversion System 915

Contributed Paper
Manuscript received 04/15/11
Current version published 06/27/11
Electronic version published 06/27/11. 0098 3063/11/$20.00 © 2011 IEEE

A Real-Time 1080p 2D-to-3D Video Conversion System

Sung-Fang Tsai, Chao-Chung Cheng, Chung-Te Li, and Liang-Gee Chen, Fellow, IEEE

Abstract — In this paper, we demonstrate a 2D-to-3D video
conversion system capable of real-time 1920×1080p
conversion. The proposed system generates 3D depth
information by fusing cues from edge feature-based global
scene depth gradient and texture-based local depth
refinement. By combining the global depth gradient and
local depth refinement, generated 3D images have
comfortable and vivid quality, and algorithm has very low
computational complexity. Software is based on a system
with a multi-core CPU and a GPU. To optimize
performance, we use several techniques including unified
streaming dataflow, multi-thread schedule synchronization,
and GPU acceleration for depth image-based rendering
(DIBR). With proposed method, real-time 1920×1080p 2D-
to-3D video conversion running at 30fps is then achieved1.

Index Terms — Depth map generation, 2D-to-3D conversion,

real-time implementation, 3D video

I. INTRODUCTION

3D video is getting immense public attention recently
because of vivid stereo visual experience over conventional
2D video. There are several methods to produce 3D content,
such as active depth sensing, stereo camera recording, and 3D
graphics rendering. Active depth sensing uses active sensors
such as structured light, time-of-flight sensor [1] to estimate
actual depth. Stereo cameras record disparity between views
and produce depth with stereo matching. However, these
methods need specific devices and are only suitable for new
content production. Most of the existing videos do not include
any pre-recorded depth information. To convert these 2D
videos to 3D ones, time-consuming manual editing of the
depth information is required and becomes a huge barrier. The
lack of 3D content has become the major problem for 3D
display industry. An efficient automatic 2D-to-3D conversion
system is necessary in this case. A typical 2D-to-3D
conversion system automatically generates depth information
from single view video and converts it to 3D video by using
the produced depth maps [2] as shown in Fig. 1.

1 Sung-Fang Tsai is now with the Graduate Institute of Electronics

Engineering, National Taiwan University, Taipei, Taiwan. (e-mail:
sftsai@video.ee.ntu.edu.tw)

Chao-Chung Cheng is with the Graduate Institute of Electronics
Engineering, National Taiwan University, Taipei, Taiwan. (e-mail:
fury@video.ee.ntu.edu.tw)

Chung-Te Li is with the Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan. (e-mail: zt@video.ee.ntu.edu.tw)

Liang-Gee Chen is with the Department of Electrical Engineering and
Graduate Institute of Electronics Engineering, National Taiwan University,
Taipei, Taiwan. (e-mail: lgchen@video.ee.ntu.edu.tw)

Fig. 1. Typical 2D-to-3D video conversion flow.

2D-to-3D video conversion is typically based on the
characteristics of human depth perception. The human brain
integrates various heuristic depth cues to generate depth
perception, including binocular cue from two eyes and various
monocular cues from single eye. 2D-to-3D conversion
recovers depth information from various depth cues in single
view video. Various techniques have been proposed in [3]-
[10]. However, generating depth maps from single view video
is an ill-posed problem. Physical depth is hard to recover even
with high complexity algorithms.

For 3D consumer electronics devices, real-time on-the-fly
conversion is required. Besides, the implementation cost must be
reasonable. In our previous proposed system, we use different
cues for depth generation [11], [12]. Our latest work proposes an
ultra low cost 2D-to-3D conversion system [13]. We use human
visual perception to generate visually comfortable depth maps
rather than physically correct depth maps. The algorithm fuses
global and local depth cues from video analysis and generates
depth information with little side effects. In this work, the system
is implemented on a laptop computer with a multi-core CPU and
a GPU. Optimization techniques such as unified streaming
dataflow, multi-thread schedule synchronization, and GPU
acceleration are applied to this system. The proposed system is
capable of real-time 1920x1080p conversion and suitable for 3D
consumer electronics devices.

The rest of this paper is organized as follows. Section II
describes the algorithm and system optimization techniques used
in the proposed system. Section III summarizes the experimental
results. Concluding remarks are finally made in Section IV.

II. PROPOSED SYSTEM

The algorithm and optimization techniques of the proposed
system are described in this section. Algorithm for the
2D-to-3D conversion is based on human visual perception.
Depth maps are generated by fusing global depth gradient and
local depth refinement. Multi-view images are rendered by

916 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

depth image-based rendering (DIBR) from the depth maps and
original 2D images. The output images are presented on a 3D
display. For real-time consideration, we apply several
optimization techniques on the multi-core CPU and the GPU.
First, to eliminate the requirement of frame-level format
conversion, we propose a format-friendly data access scheme
with unified streaming dataflow. Next, for multi-threading
optimization on the multi-core CPU, we use schedule
synchronization to maximize data reuse. Finally, we further
accelerate DIBR on the GPU if it is available in the system.
Shared memory buffering and parallel dynamic programming
are used to take care of bandwidth and visibility problem.
With proposed techniques, bandwidth is reduced and
parallelism is maximized for real-time performance.

A. Algorithm

We generate depth maps by fusing two low complexity
cues based on human visual perception rather than physical
depth information. First of all, in human's living environment,
objects in the lower visual field are mostly supposed to be
closer to the observer. Near-to-far global scene depth is the
most important cue in the real world. Secondly, lighting and
color gradient yield some depth perception and are used as the
second cue. Some great painters as Paul Cezanne use "warm"
pigments (red, orange and yellow) to indicate near objects and
"cool" ones (blue, violet, and cyan) to indicate far objects. The
above two depth cues are major cues for human depth
perception and are fused together to generate perceptual depth
fast and effectively in our system. The system block diagram
is shown in Fig. 3 in the following section. Firstly, edge
feature-based global depth gradient generates an initial scene
depth map. Then local depth map refinement fuses the initial
depth map with the texture cue. In the following subsections,
we explain the each part in detail.

1) Global Depth Map Generation

As human visual perception tends to interpret that the lower
visual field is closer, we apply near-to-far global scene depth
gradient as the major cue. To decide the gradient, we use the
fact that the depth gradient of the ground is often larger than
that of the sky. Besides, the ground area is more complex than
the sky. We use the horizontal complexity of the frame to
distinguish between the ground and the sky. The horizontal
complexity is obtained from the cumulative horizontal edge
histogram. Near to far global depth ranging from 0 to 255 for
the 8-bit depth map is assigned according to the cumulative
histogram. When horizontal complexity is higher, more depth
gradient is assigned. This method yields a sharper depth
change between the smooth sky and the objects, and between
the defocus background and the in-focus foreground. This
method has better protrusion effect than linear or fixed depth
gradient.

2) Local Depth Refinement
The concept of local depth refinement is based on two

characteristics. Firstly, the edge of the input image has high
potential to be the edge in the depth map. Secondly, people feel

red (warm) color is nearer, and blue (cold) color is farther in
visual perception. Besides, objects with higher luminance feel
like nearer than those with lower luminance. Therefore, color
can be used as a depth cue to enhance the depth perception on
both edge and color domains. Based on the concept, we use a
novel combination of Y, Cr, and Cb color channels to generate
the fine-grained depth map as discussed below.

Although not all the conditions satisfy the psychological
hypothesis, the depth with high correlation to human
perception also generates visually comfortable result. The
preserved lighting gradient on the object surface also provides
human depth perception in this case. In practice, Y and Cr are
mapping to linear increasing gains from 1-Yth to 1+Yth, and
Cb is mapping to a linear decreasing gain from 1+Cbth to 1-
Cbth for depth fusion. The following equation is used to refine
the depth map:

 xCbfx Cb CrfxYfxGxDepth CrYfused (1)

where x stands for position, G(x), fY(Y(x)), fCr(Cr(x)), fCb(Cb(x))
are the function of global depth gradient, luma Y channel gain,
chroma Cr channel gain, and chroma Cb channel gain,
respectively.

3) Depth image-based rendering(DIBR)
For 3D visualization, the input image is converted to multi-

view images with the generated depth map. The disparity
among the rendered images is observed by human eyes and
then produces 3D effect. We derive the disparity from the
depth, shown in Fig. 2. Depth image-based rendering(DIBR)
algorithm is used for the generation of multi-view images. We
use pixel-based DIBR in [14], [15].

Fig. 2. Depth and disparity relations for DIBR algorithm.

B. Performance Optimization

For real-time demonstration, the 2D-to-3D conversion
system is integrated with video decoders, a 3D video player,
and other related components in the operating system. Due to
the high resolution of video input and output, memory
bandwidth requirement is quite high and becomes a
performance bound. To reduce excess memory access, several
techniques are proposed below. The detail of each
optimization technique is discussed in following subsections.

S.-F. Tsai et al.: A Real-Time 1080p 2D-to-3D Video Conversion System 917

1) System Architecture

The system consists of two major parts: depth image
generation and DIBR, as shown in Fig. 3. Bandwidth and
computation optimization are the major concern.

For depth image generation, the execution path is complex.
The whole image frame is read several times by different
computation modules and the flow is subject to change. As a
result, it is more desired to execute on a multi-core CPU.
Different computation can be executed concurrently with
Multiple Instruction stream, Multiple Data stream(MIMD)
architecture of a multi-core CPU.

For DIBR, the dataflow is rather fixed. Besides, the
processing loading is high for pixel-based DIBR algorithm. It
is more desired to put DIBR on a highly parallelized GPU to
reduce the loading of the CPU. In addition, the bandwidth of
transferring the rendered frame can be saved if DIBR directly
renders the output frame on a GPU texture.

For these reasons, we put depth image generation on the
CPU and DIBR on the GPU to optimize bandwidth and
computation.

2) Unified Streaming Dataflow for Multi-Format
Processing

 Video decoders in the system may output video in various
formats, color space, and chroma subsampling modes as shown
in Fig. 4. Formats for input images, as RGB32, YUYV, and
YV12, may be in various kinds of colorspace, packed or planar,
horizontally or vertically sub-sampled. The final chosen format
is the negotiation result of decoders, renderers, and other
components in the system. If the format is not compatible,
frame-level color conversion by default is done beforehand. The
conversion consumes excess bandwidth, and so affects
performance. To avoid this, we firstly do the computation on the
input colorspace. Filter parameters are projected to input
colorspace instead to avoid frame-level conversion. Next, we
propose unified streaming dataflow for the system pipeline. The
depth image generation and DIBR are implemented with this
dataflow to support various pixel packing order.

Fig. 4. Stream descriptors for various pixel packing orders.

The unified streaming dataflow uses stream descriptors to

describe the pixel packing order for various formats. The
descriptors are based on shape descriptors in [16] with some
modification. A stream descriptor consists of the pointer
indicating the first element of the color component and an
description for pixel iteration order. The description consists
of three parameters: stride, span, and skip. Stride describes the
spacing between elements. Span describes how many
elements are to iterate before applying a skip offset. Span is
always equal to frame width (W) if no scaling is required.
Skip in practice is the pitch, which is the actual offset between
rows. In addition, stride and skip may be represented in
fractional numbers in terms of K / R, where K and R are the
numerator and the denominator, respectively. For stride in
fractional number Ks / Rs, the value is repeatedly processed Rs
times before applying an offset Ks. For skip in fractional
number Kp / Rp, the whole row is repeatedly processed Rp

D
ep

th
 F

u
sion

Global Depth Gradient

Local Depth Refinement

D
ecod

ed 2D
 V

id
eo

Depth Image
Based

Rendering

3D
 D

isp
lay

Depth Image Generation (Multi-Core CPU) DIBR (GPU)

Edge
Detection

Edge
Histogram

Depth
Assignment

Depth from Texture

Parameter
Mapping

(YCrCb->C0C1C2)

Scene Analysis

fC0(C0) : [0,255][1.0-C0th,1.0+C0th]

fC1(C1) : [0,255][1.0-C1th,1.0+C1th]

fC2(C2) : [0,255][1.0-C2th,1.0+C2th]

Fig. 3. System architecture for proposed 2D-to-3D video conversion system.

918 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

times before skipping a pitch Kp. For example, RGB32 in Fig.
4(a) can be processed with stride = 4. YUYV in Fig. 4(b) can
be processed with fractional chroma stride 4/2, which means
processing 2 repeating pixels before applying a 4-pixel offset.
For YV12 case in Fig. 4(c), we may use stride = 1/2 and skip
= pitch / 2 on chroma components. As shown above, various
formats can be processed with the descriptors. For practical
implementation, pointers for the three color components are
overloaded with stream descriptor-based pointers. Depth
image generation and DIBR access the input and output color
frames with proposed unified dataflow to avoid redundant
frame-level color conversion.

3) Multi-Thread Schedule Synchronization for Data
Locality Optimization

Since the system accesses the input and output frames
multiple times, the performance will be degraded without
proper scheduling. As shown in Fig. 5(a), the major system
pipeline consists of global depth assignment, local depth
refinement, and DIBR. Global depth assignment reads the
original input frame twice and read/write temporary buffer for
cumulative edge histogram, and writes a generated global
depth map to memory. Next, local depth refinement reads
original input frame once, reads the global depth map, and
writes the refined depth map to memory. Finally, DIBR reads
the refined depth map and the original input frame to produce
multi-view input frames.

Read Frame Write 3D View

Depth Image-Based
Rendering

Local
Depth Refinement

Global Depth
Assignment

Run Time

Global Depth
Assignment

Local
Depth

Refinement

Depth Image-
Based

Rendering

Read Frame Read Frame
Read Frame Read Depth

Write Depth Write Depth

Read Frame
Read Depth
Write 3D View

Run Time

Task

External
Memory Accesss

(a) Before optimization.

(b) After optimization.

External
Memory Accesss

Task

Fig. 5. Memory access optimization by multi-thread schedule
synchronization.

 Since the input frame is likely to exceed maximum CPU
cache size for 1080p video, the cache cannot effectively save
the bandwidth and the data is not reused. The same situation
happens on the generated depth map. Therefore, the system
suffers from repetitively load/store action. To eliminate the
large buffer required for the system, we change the processing
size from the whole frame to small regions. Synchronization
mechanism is added to do this. A frame-level task for each

stage is divided evenly into much smaller jobs as line
fragments. Each of the fragment ranges a number of pixels in
a horizontal row of the input frame. Synchronization points
are placed at the start of the jobs. The jobs are put in job pools.
At each synchronization point, each thread checks maximum
displacement of synchronization points among various kinds
of task. If the displacement is larger than a threshold value,
the job is postponed and the corresponding worker thread
steals job from other tasks. If no job is present, the thread
sleeps temporarily. To prevent additional read required for
histogram accumulation, the previous frame edge count is
taken instead for normalization. This method has a practically
unnoticeable effect on the visual quality. The refined schedule
is shown as Fig. 5(b). The transaction size for each action is
reduced to a line fragment. As a result, the CPU cache is
effective in buffering data. Much external memory access is
reduced. With the proposed multi-threading scheduling
synchronization scheme, data locality is improved and 60%
bandwidth is reduced.

4) GPU Acceleration for DIBR
If a GPU exists in the system, DIBR is accelerated on it to

reduce the loading of the CPU. Previous work [17]-[19]
proposes system that deliver real-time performance by using
GPU or hardware. The DIBR is based on texture shift or
supported by texture unit on GPU. The method is not very
suitable for our algorithm. Every pixel has its own depth in
our algorithm. We desire preserving the per-pixel depth and
the object gradient detail for viewing experience. For this
reason, we propose per-pixel parallel DIBR algorithm on GPU
in the following.

We use the following methods for accelerating DIBR on
GPU. Firstly, input and output frames need to be moved
between main memory and graphics memory if standalone
graphics memory is used. Data movement in between is
overlapped with computation for better performance by using
stream. If the video player supports 3D texture output, the
output frames can be directly rendered and even more
bandwidth is saved. Secondly, we use massive parallelism on
GPU to accelerate DIBR. The scheme is shown in Fig.6. The
output frames to be rendered are divided into multiple blocks
for parallel rendering. Each block contains one horizontal line.
Multiple threads in the same block render the line
concurrently. Each thread renders 1 pixel at one time. If line
width is larger than thread number, the operation repeats until
all pixels in the line are rendered. In practice, the GPU usually
contains multiple stream processors, and so multiple blocks
are rendered concurrently. Besides, each processor may
contain a few blocks for latency hiding.

For this scheme in Fig. 6, there are two major problems that
affect performance: the low effectiveness of off-chip memory
transaction and visibility problem. These two problems are the
serious limiting factor for acceleration of DIBR on GPU and
also mentioned in [20]. Methods for solving the problems are
discussed in the following.

S.-F. Tsai et al.: A Real-Time 1080p 2D-to-3D Video Conversion System 919

BLOCK 0

Thread-level Parallelism

Output frames to be rendered

BLOCK 1

BLOCK m

Fig. 6. Thread and block level parallelism for DIBR on GPU.

Off-chip memory access has low bandwidth capacity and

long latency, and so it affects performance without proper
design. Since DIBR is per-pixel processing, direct
implementation causes lots of 1-byte transaction. Many short
transactions are not efficient for accessing off-chip memory.
To avoid this, we use on-chip shared memory as an I/O buffer.
Input color images and depth images are first loaded into
shared memory. Output multi-view images are also buffered
in the shared memory before flushing out to off-chip memory.
All views are rendered at the same time for the reduction of
common input data. Since the shared memory on chip is quite
limited, we only save part of the line that is required for
current computation. Size of the memory depends on the total
number of threads in a block. More blocks can be loaded in a
single stream processor(SP) with limited use of shared
memory. Latency hiding is better in this way.

 Another major problem is visibility problem for rendering
pixels. For view rendering, objects in the same line of sight
overlap each other. Only the nearest object should be rendered.
This problem also exists in computer graphics. Since the
DIBR is pixel-based rendering, reverse painter's algorithm [21]
solves this problem efficiently. To find the nearest pixel
without checking all the possible pixels, we use the most left
pixel in the origin view that corresponds to the given line of
sight for the left view, and the most right one for the right
view. The problem then becomes a min/max problem. Here
we propose a parallel dynamic programming technique to
solve this problem efficiently. For dynamic programming, the
overlapping structure of this problem is derived below:

 xFxFMxF

xpxpMxpxpMM

xpxpMxF

kkkk

kkk

kk

111

11

,2

12,212

12

 (2)

where k is the level, x is the position, p(x) is the pixel value at
x, Fk(x) is the desired min/max result at level k ranging from
x – 2k + 1 to x, and M is min/max function according to the
viewer's position.

Since the computation of Fk(x) for level k only depends on
previous level result, we can perform calculation of the same
level in parallel. The computing scheme is shown in Fig. 7.

The data is first loaded in shared memory. Fine-grained
parallelism is used. Each step advances results in the shared
memory with one level from previous level results. In each
step, each thread performs one min/max operation and the
result is written back to shared memory. The total number of
required step is the binary logarithm value of the disparity
range. As a result, we may find out the required min / max
value efficiently by repeating a few steps of the above process.
Since the disparity range can be derived for the given system
in advance, loop unrolling is also used to eliminate iteration
overhead. With this method, the visibility problem is solved
efficiently.

...
F2 [0] F2 [1] F2 [2] F2 [3]

F1 [0] F1 [1] F1 [2] F1 [3]

F0 [0] F0 [1] F0 [2] F0 [3]

F2 [n]

F1 [n]

F0 [n]

M M M M

M

Step 1

M M

Fk [0] Fk [1] Fk [2] Fk [3] Fk [n]

M

Rendering Positions
(Shared Memory)

Step 2

Step k M M M

...

...

...
...

Fig. 7. The computing scheme of rendering positions. Parallel dynamic
programming technique is used on GPU to solve visibility problem.

III. EXPERIMENT RESULTS

To evaluate the algorithm, we compare the proposed
algorithm with algorithms of two previous work. The analyses
on visual quality and performance are shown in the following.

A. Visual Quality Analysis

The visual quality of the proposed algorithm was evaluated
by comparing the result from three algorithms as the
conventional motion-based algorithm, the edge-based
algorithm in [12], and the proposed algorithm. Motion-based
algorithm was implemented based on [5]. Four video
sequences, Air, Fashion, Arctic, Cod from [23], and two video
sequences, Akko & Kayo, Flamingo from MPEG Multi-view
video coding were used to perform the subjective view
evaluation. The results were evaluated using a slightly
modified version of single-stimulus presentation method in
ITU-R BT.500-10 [24]. The synthesized results were
displayed on the 120Hz 3D display with active shutter glasses
for evaluation. The subjective evaluation was performed by 20
individuals. The participants watched the stereoscopic videos
in a random order and were asked to rate visual quality of each

920 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

video. The overall quality of depth quality was assessed using a
five-segment scale and mapped to 100 point scale. Fig. 9 shows
the values of the two factors acquired by experiments for the six
evaluation sequences. Fig. 8 shows some example of depth map.

0

20

40

60

80

100

120

Air Fashion Arctic Cod Akko&Kayo Flamingo

Motion-based Edge-based Proposed

Fig. 9. Subjective evaluation results.

The conventional motion-based algorithm as [5] relies on

the quality of the motion vector. In the sequences with regular
motions such as Air sequence, motion parallax is captured
correctly and the depth has best protrusion effect among all.
The regular motion implies that the object has a simple
movement in the same direction. If the objects have complex
self motions or varying lighting source such as Flamingo, or
uncompensated ego motion as Fashion, the motion-based
algorithm generates non-continuous or ill-predicted depth and
makes viewers feel uncomfortable. In addition, the depth is
not extracted correctly if the object is stationary or no relative
motion exists.

The edge-based algorithm and the proposed algorithm have
less side effects and yield good quality. Compared with the
conventional motion-based algorithm that generates depth
from multiple frames, the latter two methods use only a single
image to generate depth. However, the quality of edge-based
algorithm will drop if the assumption of the global depth does
not hold or large foreground objects exist, such as Air. In
comparison, proposed algorithm has texture cues and still
generates satisfactory depth with little perceptible side effects.

From observation, we also discover an interesting
phenomenon. Human visual perception still generates correct
result even when the depth map of object is inverted. The
phenomenon can also be found in the hollow-face illusions
[22]. When the light gradient on the surface is preserved,
human visual system may overwrite the depth perception with
daily life experience. Hence, texture gradient should play an
important role on the depth perception. This could also
explain the subjective quality test result of proposed algorithm.
The side effects are hard to discover even the depth is inverted.
Finally, Fig. 10 shows some examples of red-cyan
stereoscopic images generated from the proposed algorithm.

Fig. 10. The red-cyan images of the six test sequences.

B. Performance Analysis and Implementation

The system is implemented on a notebook computer, and
integrated in a 3D video player software for evaluation. CPU
of the notebook is an 1.60 GHz quad-core CPU with 6M
cache featuring simultaneous multithreading. The notebook

50

(a) Air (b) Fashion (c) Arctic (d) Cod (e) Akko & Kayo (f) Flamingo

Original
Image

Motion-
based

Edge-
based

Proposed

Fig. 8. Original 2D images (first row), depth maps result of motion-based (second row), edge-based (third row), and proposed algorithm (bottom).

S.-F. Tsai et al.: A Real-Time 1080p 2D-to-3D Video Conversion System 921

has a 1.375GHz GPU with 7 stream processors inside. Each
stream processor consists of 16 cores.

To compare performance of the three algorithm fairly, all the
algorithm is run on CPU with single thread. The performance is
shown in TABLE I. We use our implementation of the motion
estimation for the run-time of the motion-based algorithm. The
time can be less if the motion vectors come from the decoder.
As we can see, the proposed algorithm has relatively low
computation time in comparison to the other two algorithms.

TABLE I

ALGORITHM PERFORMANCE COMPARISON

Algorithm Average Performance

 Motion-based Algorithm ~7231 ms / frame
 Edge-based Algorithm 17261 ms / frame
 Proposed Algorithm (Un-optimized) 901 ms / frame

With proposed optimization techniques, 960×540p @ 30fps is

achieved on the multi-core CPU alone. With GPU acceleration
for DIBR, 1920×1080p @ 30fps video conversion is achieved.
Because the DIBR is run on GPU, CPU usage is reduced to
30%~50%. The specification of DIBR on GPU is shown in
TABLE II. The usage of the shared memory is reported by
compiler. Besides, the shared memory usage depends on number
of threads per block. Since the shared memory resource is limited,
we choose the number of threads for best balance. DIBR can be
run on GPU efficiently with the proposed technique. With the
proposed method, the performance of 2D-to-3D conversion is
achieved for 1920x1080p video at real-time 30fps.

TABLE II

SPECIFICATION OF DIBR ON GPU

Properties Specification

 Register used per thread 16 registers
 Shared memory used per block 1440 bytes
 Threads per block 64 threads
 Rendering performance 1920x1080p@30fps
 Speedup 26.4x

IV. CONCLUSION
An efficient algorithm and optimization of 2D-to-3D

conversion are presented. The proposed algorithm uses simple
assumption as depth cues with little side effects instead of
combining computation-extensive depth cues. We demonstrate
the system on a multi-core CPU and a GPU. Several techniques
are proposed to optimize bandwidth bottleneck. Real-time
performance is achieved in converting 1920×1080p @ 30fps.
The proposed system is suitable for consumer 3D devices. In
future, we may further integrate the whole system in the naked-
eye multi-view 3D system for 3D application.

REFERENCES
[1] S. B. Gokturk, H. Yalcin, and C. Bamji, "A time-of-flight depth sensor,

system description, issues and solutions," IEEE Workshop on Real-Time
3D Sensors and Their Use, 2004.

[2] Sung-Yeol Kim, Sang-Beom Lee, and Yo-Sung Ho, "Three-dimensional
natural video system based on layered representation of depth maps," in
IEEE Transactions on Consumer Electronics, 2006.

[3] Chao-Chung Cheng, Chung-Te Li, Yi-Min Tsai, and Liang-Gee Chen,"
Quality-Scalable Depth-Aware Video Processing System," SID
Symposium Digest of Technical Papers, 2009.

[4] Wa James Tam, Carlos Vázquez, and Filippo Speranza,
"Threedimensional TV: A novel method for generating surrogate depth
maps using colour information," in SPIE Electronics Imaging, 2009

[5] I.A. Ideses, L.P. Yaroslavsky, B. Fishbain, R. Vistuch, "3D from
Compressed 2D Video," Proceedings. of SPIE, Vol.6490, 2007.

[6] Yong Ju Jung, Aron Baik, Jiwon Kim, and Dusik Park, "A novel 2D-
to-3D conversion technique based on relative height depth cue," SPIE
Electronics Imaging, Stereoscopic Displays and Applications XX,
2009.

[7] H.Murata et al, "Conversion of Two-Dimensional Images to Three
Dimensions," SID Symposium Digest of Technical Papers, 39.4, pp859-
862, 1995.

[8] T. Iinuma, H. Murata, S. Yamashita, and K. Oyamada, "Natural
Stereo Depth Creation Methodology for a Real-time 2D-to-3D
Image Conversion," SID Symposium Digest of Technical Papers,
2000.

[9] H. Murata et al, "A Real-Time 2-D to 3-D Image Conversion
Technique Using Computed Image Depth," SID Symposium Digest
of Technical Papers, 32.2, pp919-922, 1998.

[10] Chul-Ho Choi, Byong-Heon Kwon, and Myung-Ryul Choi, "A real-time
field sequential stereoscopic image converter," IEEE Transactions on
Consumer Electronics, 2004.

[11] Chao-Chung Cheng, Chung-Te Li, Po-Sen Huang, Tsung-Kai Lin, Yi-
Min Tsai, and Liang-Gee Chen, "A block-based 2D-to-3D conversion
system with bilateral filter," International Conference on Consumer
Electronics(ICCE), 2009.

[12] Chao-Chung Cheng, Chung-Te Li, and Liang-Gee Chen, "A 2D-to-3D
Conversion System Using Edge Information," IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, pp. 1739-1745, Aug. 2010.

[13] Chao-Chung Cheng, Chung-Te Li, and Liang-Gee Chen, "An Ultra-
Low-Cost 2D-to-3D Conversion System," SID Symposium Digest of
Technical Papers, 2010.

[14] W.-Y. Chen, Y.-L. Chang, and L.-G. Chen, "Real-time depth image
based rendering hardware accelerator for advanced three dimensional
television system," IEEE Int. Conf. on Multimedia and Expo., 2006.

[15] W.-Y. Chen, Y.-L. Chang, S.-F. Lin, L.-F. Ding, and L.-G. Chen,
"Efficient Depth Image Based Rendering with Edge Dependent Depth
Filter and Interpolation," IEEE Int. Conf. on Multimedia and Expo.
(ICME), 2005

[16] S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Morris, M.
Schuette, annd A, Saidi, "The Reconfigurabte Streaming Vectror
Processor (RSVP)," MlCRO'36, December 2003.

[17] Man Hee Lee, and In Kyu Park, "Accelerating Depth Image-Based
Rendering Using GPU," Lecture Notes in Computer Science, vol. 4105,
pp. 562-569, 2006.

[18] Chun-Te Wu, Wei-Hao Huang , Chih-Hao Liu, Wei-Jia Huang, Kai-Che
Liu and Ludovic J. Angot, "A Real-Time Video 2D-to-3D With Bilateral
Grid," ACM Special Interest Group on GRAPHics and Interactive
Techniques(SIGGRAPH), 2010.

[19] Yamada, K., and Suzuki, Y., "Real-time 2D-to-3D Conversion at Full
HD 1080P Resolution, " International Symposium on Consumer
Electronics (ISCE), 2009.

[20] D. Lin, V. Huang, Q. Nguyen, J. Blackburn, C. Rodrigues, T. Huang, M.
N. Do, S. J. Patel, and W.-M. W. Hwu, "The parallelization of video
processing," IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 103–
112, Nov. 2009.

[21] Foley, James, van Dam, Andries, Feiner, Steven K., Hughes, and John F.,
"Computer Graphics: Principles and Practice," Addison-Wesley, 1990,
p. 1174. ISBN 0-201-12110-7.

[22] Richard Gregory, "Knowledge in perception and illusion," Philosophical
Transactions of the Royal Society of London, Series B 352, pp. 1121–
1128, 1997.

[23] André Redert, Robert-Paul Berretty, Chris Varekamp, Oscar Willemsen,
Jos Swillens, Hans Driessen, "Philips 3D solutions: from content
creation to visualization," Proceedings of the Third International
Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT), pp.429-431, 2006.

[24] ITU-R Recommendation BT.500-10, (2000), "Methodology for the
subjective assessment of the quality of television pictures."

922 IEEE Transactions on Consumer Electronics, Vol. 57, No. 2, May 2011

BIOGRAPHIES

Sung-Fang Tsai was born in Hsinchu, Taiwan in 1983.
He received the B.S. and M.S. degree in electrical and
electronics engineering from National Taiwan University,
Taipei, Taiwan in 2005 and 2007, where he is working
toward the Ph. D. degree at the Graduate Institute of
Electronics Engineering. His major research interests
include video coding and algorithm, computer vision, and
architecture design of 2D-to-3D video conversion system.

Chao-Chung Cheng (S'08) was born in Tainan, Taiwan,
R.O.C. in 1981. He received the B.S., and M.S. degrees
in Electronics Engineering from National Chiao-Tung
University, Hsinchu, Taiwan, R.O.C., in 2003, and 2005,
respectively, and Ph.D. degrees in Electronics
Engineering from National Taiwan University, Taiwan,
Taiwan, R.O.C., in 2010. His research interests include
digital signal processing, video system design, 3D signal
processing, stereo vision and 2D-to-3D conversion.

Chung-Te Li was born in Taipei, Taiwan, R.O.C. in
1984. He received the B.S. degree in Department of
Electronics Engineering from National Taiwan
University, Taiwan, Taiwan, R.O.C., in 2006. He is
currently a Ph.D. student of Graduate Institute of
Electronics Engineering from National Taiwan
University. His research interests include digital signal
processing, computer vision and image/video processing
algorithm.

Liang-Gee Chen (S'84–M'86–SM'94–F'01) received the
B.S., M.S., and Ph.D. degrees in electrical engineering
from National Cheng Kung University, Tainan, Taiwan,
R.O.C., in 1979, 1981, and 1986, respectively. In 1988, he
joined the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan. From 1993 to 1994, he
was a Visiting Consultant in the DSP Research
Department, AT&T Bell Labs, Murray Hill, NJ. In 1997,
he was a Visiting Scholar of the Department of Electrical

Engineering, University of Washington, Seattle. Currently, he is Professor
with National Taiwan University. His current research interests are DSP
architecture design, video processor design, and video coding systems. Dr.
Chen has served as an Associate Editor of IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as
Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since
1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND
SYSTEMS II since 2000. He has been the Associate Editor of the Journal of
Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for
the Journal of Video Signal Processing Systems. He is also the Associate
Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman
of the Seventh VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE
Workshop on Signal Processing Systems: Design and Implementation. He is
the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society
and is a member of the IEEE CAS Technical Committee of VLSI Systems and
Applications, the Technical Committee of Visual Signal Processing and
Communications, and the IEEE Signal Processing Technical Committee of
Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE
CAS Technical Committee on Multimedia Systems and Applications. From
2001 to 2002, he served as a Distinguished Lecturer of the IEEE CAS Society.

